Econometrics

Serial Correlation and Heteroskedasticity in Time Series Regressions,
Wooldridge (2013), Chapter 12

@ Serially Correlated Errors: Consequences

o Testing for Serial Correlation

@ Generalised Least squares (GLS) with strictly exogenous
regressors

@ Serial Correlation-Robust Standard Errors
o Heteroskedasticity in Time Series Regressions
o Autoregressive Conditional Heteroskedasticity

@ GLS with heteroskedasticity and serial correlation.



Serial Correlation and Heteroskedasticity in Time

Series Regressions

Serially Correlated Errors: Consequences

o With assumptions TS.1 through TS.3, OLS estimators are unbiased
Recall:

Assumption (TS.1 - linearity in parameters)

The stochastic process { (¢, X1, X2, ..., Xg);t = 1,2, ..., n} follows the linear
model:

Yr = ﬁo =F ,31xt1 + ...+ ﬁkxtk + u

Assumption (TS.2 - no perfect collinearity)

No regressor independent variable is a constant nor a perfect linear
combination of the other regressors.




Serial Correlation and Heteroskedasticity in Time

Series Regressions

Serially Correlated Errors: Consequences

Let X denotes the matrix of all regressors for all time-periods, i.e.
X = [xt]-;t =1,..,.n&j=1;.;k].

Assumption (TS.3 - zero conditional mean)

E(uX)=0,t=1,2,...,n
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Series Regressions

Serially Correlated Errors: Consequences

@ With assumptions TS.1” through TS.3’, OLS estimators are
consistent

Assumption (TS.1’ - linearity in parameters)

The stochastic process { (yt, Xp1, X2, ..., X ); t = 1,2, ..., n} is stationary and
weakly dependent and follows the linear model:

Yr = ﬁo a4 ,B]th 4 ...+ ‘katk -+ Uy

Assumption (TS.2” - no perfect collinearity)

No regressor independent variable is a constant nor a perfect linear
combination of the other regressors.
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Series Regressions

Serially Correlated Errors: Consequences

Write x; = (x41,._Xgx)-

Assumption (TS.3” - zero conditional mean)

E(ut|xt) =0,t=1,2,...,n
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Series Regressions

Serially Correlated Errors: Consequences

@ In Time Series we often have serial correlation in the errors (TS.5
or TS.5" is violated): For each t;s =1, 2,...,n such that t # s:

Corr(uy, ug|xs, xs) # 0

@ But for inference, results areNOT valid if TS.5 (or TS.5’) fail: With
serial correlation in the errors, usual OLS variances are NOT
valid.
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Series Regressions

Serially Correlated Errors: Consequences

o If we do not have lagged dependent variables as regressors, and
have serial correlation, OLS is unbiased and consistent but the
usual formulas for the standard errors are not valid.

@ Serial correlation might lead to inconsistency if we have lagged
dependent variables as regressors, but not always.

Example 1:

Yi = B+ Bryi-1 + us
where E[u¢|y;—1] = 0 and {u;} are serially correlated. In this case OLS
is consistent.

Example 2:
Ye = B+ Bryi-1 +us
and
ur = pup—1 +e,
t=2,...,n,wheree areiid., |p| < 1and
E[et|ut_1,ut_2, .. ] = E[et|yt—1/yt—2/ .. } =0.
]
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Series Regressions

Serially Correlated Errors: Consequences

Example 2: (cont)
@ Then,

Cov(yi—1,ur) = Ely—1(pus—1 +et)]
PE(ye—1144-1)
= PE[y-1(yi-1— By — Biyi—2)] #0

unless p = 0.

@ In this case the OLS estimators are not consistent for B, B; . This is
a special form of autocorrelation.
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Series Regressions

Serially Correlated Errors: Consequences

Models with lagged dependent variables and serial correlation in the

errors can often be easily transformed into models without serial
correlation in the errors

Example 2 (cont): Notice that:

ve = Pyt Byt
= Bo+ Biyi-1 +pWYi—1— By — Biyi—2) +et
= Bo(l—p) + (B +p)yt-1—pPryt—2 + et
—_———  ——— ——
&0 X1 [15]

= wgt+ Y1t agyr2ter

where Ele¢|yi—1,Yt—2,...] = 0and
Elytlye—1,Ye—2, - -] = E[e|yi—1,ye—2] = ao + a1ye—1 + aoys—o + es.
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Series Regressions

Serially Correlated Errors: Consequences

@ Thus, the “relevant” model is an AR(2) model for y. With further
conditions on the parameters (that ensure stability) we can
estimate the a;’s consistently.

@ Hence, if you have serial correlation you can add a lagged
dependent variable to the model and that might lead to a model
with no serial correlation.
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Series Regressions

Testing for AR(1) Serial Correlation

@ Want to be able to test for whether the errors are serially
correlated or not.
@ Consider the multiple regression model

@ Want to test the null that p = 0 in
up = pur-1tet,

t = 2,...,n, where u; is the model error term and ¢; is iid.
e With strictly exogenous regressors E(ug|X) = 0,t = 1,2,...,n, the

test is: straightforward:

@ Obtain the OLS residuals of the original model.

@ simply regress the residuals on (one period) lagged residuals
(use OLS).

@ Use a typical t-test for Hy : p = 0 (don’t need intercept). (The
asymptotic distribution of the t-statistic is standard normal).

B T
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Series Regressions

Testing for AR(1) Serial Correlation

@ We assume TS.1 through TS.4 (homoskedasticity) hold. If TS.4
fails use a heteroskedasticity robust statistic as in chapter 8.

This test detects correlation between u; and u;_1 but not between u;
and u;_».

@ Remark: This test is only valid if we do not have lagged
dependent variables as regressors.
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Series Regressions
Testing for AR(1) Serial Correlation

Example: US data: 1948-1996

Inflation; = B, + B, Unemployment; + u;

Dependent Variable: INF
Method: Least Squares
Sample: 149
Included observations: 49

Variable Coefficient Std. Error t-Statistic Prob

Cc 1.42361 1.719015 0.828154 04118

UNEM 0467626 0.289126 1.617376 0.1125
R-squared 0.052723 Mean dependent var 4,108163
Adjusted R-squared 0.032568 S.D. dependent var 3.182821
S.E. of regression 3130562  Akaike info criterion 5.160262
Sum squared resid 460.6198 Schwarz criterion 5237479
Log likelihood -124.426  Fostatistic 2.615904
Durbin-Watson stat | 0.8027 ‘ Prob(F-statistic) 0.11249

B T
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Series Regressions
Testing for AR(1) Serial Correlation

Example: Regress residuals of previous equation on past residuals

Dependent Variable: RESIDO01
Method: Least Squares
Sample(adjusted): 2 49

Included observations: 48 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
RESIDO1(-1) 0.572735 0.115013 4.979738 0
R-squared 0.344633 Mean dependent var -0.10207
Adjusted R-squared 0.344633 S.D. dependent var 3.046154
S.E. of regression 2466005  Akaike info criterion 4.66369
Sum squared resid 285.8156  Schwarz criterion 4.702673
Log likelihood -110.929  Durbin-Watson stat 1.351045

What do you conclude at 5% level?
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Series Regressions

Testing for AR(1) Serial Correlation - Durbin Watson statistic

@ An alternative is the Durbin-Watson (DW) statistic, which is
calculated by many packages. Need TS.1 to TS.6 holding:

Y (fip—q — fuy)?
Yo i

@ Notice that if we do not have serial correlation p ~ 0. Thus
DW = 2.

o If the DW statistic is around 2, then we do not reject Hy (absence
of serial correlation of AR(1) type), while if it is significantly < 2
we reject the null hypothesis (against the alternative Hy : p > 0,
the most typical).

DW =

~2(1-p)

o Critical values are difficult to calculate as they will depend on
the regressors of the model, making the t test easier to work with.

B
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Series Regressions

Testing for AR(1) Serial Correlation (continued)

o If the regressors are not strictly exogenous, both tests for serial
correlation described before will not work.

@ For example: If there are lngged dependent variables as regressors
then neither previous t- statistic or DW test for serial correlation
will work.

@ There are alternative tests that are valid under TS.1” through
TS.2’ (that are valid also with TS.1 through TS.4).

@ Regress the residual (or y) on the lagged residual and all of the x’s.

@ Then test the significance of the lagged residual using the usual
t-statistic.

B B —r
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Series Regressions

Testing for AR(1) Serial Correlation (continued)

Example: (cont) Regress residuals of previous equation on past
residuals and regressors

Breusch-Godfrey Serial Conrelation LM Test:

F-statistic 27.83291 Probability 0.000003
Obs*R-squared 18.47161 Probability 0.000017
Test Equation:

Dependent Variable: RESID

Presample missing value lagged residuals set to zero.

Variable Coefficient Std. Error t-Statistic Prob.
C 2.705871 1.464288 1.847909 0.0711
UNEM -0.47356 0.24753 -1.913156 0.062
RESID(-1) 0.659484 0.125004 5.27569 0
R-squared 0.376972  Mean dependent var -1.97E-16
Durbin-Watson stat 1.818217 Prob(F-statistic) 0.000019
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Series Regressions

Testing for Higher Order Serial Correlation

Can test for AR(q) serial correlation in the same basic manner as
AR(1):

y = By+pBix1+ ..+ Bt
Ut PqUt—1 + Ut + ... + Pqht—q + et

e where ¢; is an iid sequence with E(e;|u;_1, ..., ut—4) =0,
Var(es|us—1, ..., u—q) = a2

@ ThenullisHp:p; =...=p
one p; such that p; # 0.

g = 0. The alternative is H; : the is

B
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Series Regressions

Testing for Higher Order Serial Correlation

Steps:
@ Regress the residual (or y) on the g lagged residual and all of the
x’s.
@ Then use the usual test of multiple restrictions (on the
coefficients of the lagged residuals).

@ Can use F test or LM test, where the LM version is called a
Breusch-Godfrey test and is LM = (n — q)R? ~ x2(q) using R?
from residual regression

@ If there is heteroskedasticity can use heteroskedastic robust
statistics.

e B —
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Series Regressions

Testing for Higher Order Serial Correlation

Example: Alternative Specification — Augmented Phillips Curve

Inflation; — Inflation; 1 = B, + B, (Unemployment; — NaturalRate®) + u;

Dependent Variable: INF-INF(-1) ‘
Method: Least Squares
Sample(adjusted): 2 49
Included observations: 48 after adjusting endpoints

Variable Coefficient | Std. Error t-Statistic Prob.

C 3.030581 1.37681 2201161 0.0328

UNEM -0.54259 0.230156 -2.357475 0.0227
R-squared 0.107796 Mean dependent var -0.10625
Adjusted R-squared 0.0884  S.D. dependent var 2.566926
S.E. of regression 2450843  Akaike info criterion 4671515
Sum squared resid 276.3051 Schwarz eriterion 4.740482
Log likelihood -110.116  F-statistic 5.557689
Durbin-Watsonstat | 1769648 | Prob(F-statistic)
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Series Regressions

Testing for Absence of AR(2) Serial Correlation in the errors without Strict Exogeneity.

Regress residuals of previous equation on lagged residuals and
regressors

Breusch-Godfrey Serial Correlation LM Test:
F-statistic 4.408984 Probability 0.017979
Obs*R-squared 8.013607 Probability 0.018191
Test Equation:
Dependent Variable: RESID
Method: Least Squares

Presample missing value lagged residuals set to zero.

Variable Coefficient Std. Error t-Statistic Prob.

C -0.83592 1.31912 -0.633697 0.5296

UNEM 0.144109 0.220873 0.652453 0.5175

RESID(-1) -0.05971 0.138511 -0.431046 0.6685

RESID(-2) -0.4168 0.140903 -2.958062 0.005
R-squared 0.16695 Mean dependent var 4.39E-16
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Series Regressions

Correcting for Serial Correlation

o If there is serial correlation in the errors, inference using the
“usual” formulas with OLS is not valid.

@ What can we do?

@ As in the cross-sectional case with Heteroskedasticity we have 2
alternatives:
@ Use Generalised Least Squares (in case of strictly exogenous regressors).
@ Use OLS but compute Serial-Correlation Robust Standard errors (in

correctly specified models satisfying the contemporaneous exogeneity
assumption).

B
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Series Regressions

Generalised Least squares with strictly exogenous regressors

@ Let us assume TS.1 through TS.4 (homoskedasticity) hold in our
model, but TS.5 (no serial correlation) fails to hold. Also, assume
stationarity and weak dependence as in TS.1".

Consider the model
Ye = By + Brxa + o+ Py + e
Assume errors follow an AR(1) so
ur = pup1 +e,

t=2,...,nwhere |p| < 1and ¢ is an i.i.d. sequence with E[e;|X] = 0
and also Var|e;|X] = o2

ot

_P2

Var(u| X) = 1

Let us first assume that p is known.
We can transform the equation so we have no serial correlation in the
errors

B



Serial Correlation and Heteroskedasticity in Time

Series Regressions

Generalised Least squares with strictly exogenous regressors

Yr = IBO + ,lelfl + ...+ ﬁkxtk =+ uy
Notice that

pYi-1 = PPy + PP1Xt—1,1 + - F PPX—1k + Pl

Hence
ye—pyi-1 = (1—=p)Bg+By(xan — pxi-1,1) + oo + By (X — px; 1) +et,
fort > 2

@ In this quasi-differenced model for t > 2, TS.1 through TS.5 hold!

e
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Series Regressions

Generalised Least squares with strictly exogenous regressors

So far we ignored the first observation. Can transform equation for
t=1,
y1 = By + Brxan + o A Bk + 1

so that TS.1 through TS.5 hold for t = 1 (not yet the case since 17 and
e have a different variance):

Var(in|X) = 02/ (1 - %)

How can we do it?
We can multiply equation by (1 — p?)!/2 to have TS.1 through TS.5
holding fort =1

(1= = (1=p*)"2B+ (1= ") g+ + (1= p1) 2B
+(1 _ pZ)l/Zu1
In this quasi-differenced model, TS.1 through TS.5 hold!
B
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Series Regressions

Generalised Least squares with strictly exogenous regressors

The transformed model is:

¥t = BoXio + B1Xn + ... + Bi¥u + 8,
where

{ (1-p)2y t=1 {(l—pz)l/2 t=1
t =
1

y ]/t —P]/t—l ¢ Z 2 X0 =

and
s 1—0p2) V2% t=1 |
xt]-—{( LA B
xt,] th—l,] =

B B —



Serial Correlation and Heteroskedasticity in Time

Series Regressions
GLS (cont.)

@ If is p known, can estimate the transformed regression by OLS.
@ This is called the GLS estimator of the original model.
e GLSis BLUE if TS.1 through TS.5 hold in the transformed model.

@ Can use t and F tests from the transformed equation to conduct
inference on the parameters of the original equation.

@ These tests are valid (asymptotically) if TS.1 through TS.5 hold in
the transformed model (along with stationarity and weak
dependence in the original variables) and distributions
(conditional on X) are exact (and with minimum variance) if TS.6
holds for the ¢;.
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Series Regressions
Feasible GLS

@ Problem: don’t know p, need to get an estimate first

@ Run OLS on the original model and then regress residuals I; on
lagged residuals fi;_1 (with OLS). The obtained estimator p is the
estimator of p.

@ Finally, replace p by p and use OLS on the transformed
regression. This is a feasible GLS (FGLS) estimator (or
Prais-Winsten estimator).

o If we ignore the first equation (f = 1) we have the
Cochrane-Orcutt estimator (also a FGLS estimator).

@ These FGLS estimators are not unbiased, but are consistent if
TS.1 through TS.5 hold in the transformed model (along with
stationarity and weak dependence in the original model).

@ There is no difference, asymptotically (for large sample sizes),
between the two procedures.

B
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Series Regressions
Feasible GLS

@ fand F tests from the transformed equations are valid
(asymptotically). If TS.6 holds for the ¢; , relevant distributions
also hold only asymptotically.

@ FGLS is asymptotically more efficient than OLS

@ This basic method can be extended to allow for higher order
serial correlation,AR(q), in the error term. Econometrics
packages deal automatically with estimation of AR serial
correlation

B B —
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Series Regressions
Feasible GLS

Example:
Inflation; = B, + B, Unemployment; + u;

US data: 1948-1996

Dependent Variable: INF
Method: Least Squares
Sample: 149
Included observations: 49

Variable Coefficient Std. Error t=Statistic Prob

C 1.42361 1.719015 0.828154 04118

UNEM 0.467626 0.289126 1.617376 0.1125
R-squared 0.052723 Mean dependent var 4.108163
Adjusted R-squared 0.032568 S.D. dependent var 3.182821
S.E. of regression 3130562  Akaike info criterion 5.160262
Sum squared resid 460.6198 Schwarz eriterion 5237479
Log likelihood -124.426  Fostatistic 2.615904
Durbin-Watson stat | 0.8027 ‘ Prob(F-statistic) 0.11249
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Series Regressions
Feasible GLS

Need to estimate p so we regress residuals of previous equation on
past residuals

Dependent Variable: RESIDO1
Method: Least Squares
Sample(adjusted): 2 49

Included observations: 48 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
RESIDO1(-1) 0.572735 0.115013 4.979738 0
R-squared 0.344633 Mean dependent var -0.10207
Adjusted R-squared 0.344633  S.D. dependent var 3.046154
S.E. of regression 2.466005  Akaike info criterion 4.66369
Sum squared resid 285.8156 Schwarz criterion 4702673
Log likelihood -110.929  Durbin-Watson stat 1.351045
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Series Regressions
Feasible GLS

Transform variables with estimated and apply OLS to transformed
equation, t>2

Dependent Variable: INF-.572735*INF(-1) ‘
Method: Least Squares
Sample(adjusted): 2 49
Included observations: 48 afier adjusting endpeints
Variable Coefficient Std. Error t-Statistic Prob.
1-.572735 5.509824 2.037318 2.70445 0.0096
UNEM-.372735*UUNEM(-1) -0.27931 0.321911 -0.867665 0.3901
R-squared 0.016103 Mean dependent var 1.658889
Adjusted R-squared -0.00529 S.D. dependent var 2.349715
S.E. of regression 2.355918 Akaike info criterion 4.592512
Sum squared resid 255316 Schwarz criterion 4.670478
Log likelihood -108.22 Durbin-Watson stat 1.217816

B
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Series Regressions
Feasible GLS

Comparison of OLS and Cochrane-Orcutt

Coefficient OLS Cochrane-Orcutt

pr=.573
Intercept 1.42 5.51
(s.e.) (1.72) (2.04)
{t {83} 271
Unem 0.47 -0.28
(s.e.) (0.289) (0.32)

{t} {1.62} {-0.869}

(Observations) 49 48

R-Squared 0.0527 0.016

B
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Series Regressions

Serial Correlation-Robust Standard Errors

@ FGLS asymptotic distributions rely on strict exogeneity of the
regressors

o If strict exogeneity does not hold, we can still use OLS (it is
consistent with only contemporaneous exogeneity, or TS.1,
along with TS.2” and TS.3’). Further, we can calculate serial
correlation-robust standard errors

@ Actually, with only TS.1” through TS.3” we can derive
Heteroskedasticity and Serial Correlation robust standard errors, also
known as Heteroskedasticity and Autocorrelation (HAC) robust
standard errors or Newey-West HAC standard errors.

e
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Series Regressions

Serial Correlation-Robust Standard Errors

@ Heteroskedasticity and serial correlation-robust standard errors:
R 2 (_____The ust_.lal oLS standal_'d errors are
se(3:) = [0-] @ normalized and then ,inflated” by
(ﬁj ) m a correction factor.
where

N 2
" a\n__ R e 2. 2
o "se (B;)"= T ST = E (j— %) and R is the R

from the regressing x; on all other x's.)

o Remark: these formulae are the formulae of the standard error or

B; and the estimator of the variance of u; proposed under the
Gauss Markov assumptions.

e
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Series Regressions

Serial Correlation-Robust Standard Errors

@ Correction factor for serial correlation (Newey-West formula):

n q n
=) ar+23 [1—h/(_q+1)1( ) aﬂalh)
=1

h=1 t=h+1

This term is the product of the residuals and the residuals
— 4--""'
ag =Tt u of a regression of x,; on all other explanatory variables

B



Serial Correlation and Heteroskedasticity in Time

Series Regressions

Serial Correlation-Robust Standard Errors

@ The integer g is called lag-truncation or bandwidth and controls
how much serial correlation is taken into account:

The weight of higher order
autocorrelations is declining

n n /\ n
o= a; + (4/3) Y @ma—1 +(2/3) > aar—o
t=1 =2 t=3

o t-statistics, Wald statistics and LM statistics are computed using
these standard errors (Econometrics packages compute this).

B
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Series Regressions

Serial Correlation-Robust Standard Errors

Discussion of serial correlation-robust standard errors

@ For the integer g, values such as g=2 or g=3 are normally
sufficient (there are more involved rules of thumb for how to
choose g)

@ Serial correlation-robust standard errors are only valid
asymptotically; they may be severely biased if the sample size is
not large enough

@ The bias is the higher the more autocorrelation there is; if the
series are highly correlated, it might be a good idea to difference
them first

@ Serial correlation-robust errors should be used if there is serial
correlation and contemporaneous exogeneity holds.

B
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Series Regressions

Serial Correlation-Robust Standard Errors

Example:

Dependent Variable : INF Observations: 49

Newey-West HAC Standard Errors & Covariance (lag
truncation=3)

Variable Coefficient Std. Error t-Statistic Prob.

Cc 1.42361 1.515019 0.939665 0.3522
UNEM 0467626  0.291606 1.603624 0.1155
R-squared 0.052723 Mean dependent var 4.108163
Adjusted R-squared 0.032568  S.D. dependent var 3.182821
S.E. of regression 3.130562  Akaike info criterion 5.160262
Sum squared resid 460.6198 Schwarz criterion 5.237479
Log likelihood -124.4264  F-statistic 2.615904
Durbin-Watson stat 0.8027 Prob(F-statistic) 0.11249

B B —
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Series Regressions

Heteroskedasticity in Time Series Regressions

Effects on OLS: Similar consequences to those of serial correlation and
to those of conditional heteroskedasticity in cross-section regressions:

@ OLS estimates of coefficients remain consistent.
@ Usual OLS standard errors are invalid
@ Usual t-test and F-tests are invalid
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Series Regressions

Heteroskedasticity in Time Series Regressions

Dealing with Conditional Homoskedasticity
As in cross-section regressions we can go one of two routes:

© Compute corrected standard errors and implement corrected
t-test and F-tests. (HAC standard errors are valid here).

@ Compute Generalised least squares estimates.

The usual tests of conditional heteroskedasticity can be applied in
time-series regressions but are only valid in the absence of serial
correlation. In contrast we can implement versions of the tests for
serial correlation that are valid in the presence of conditional
heteroskedasticity.

B B —T
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Series Regressions

Autoregressive Conditional Heteroskedasticity

@ This forms the basis for the Autoregressive-Conditional
Heteroskedasticity

@ Consider the following static model:

y =Byt Byxe +u,

such that E(u;|X) = 0,where X denotes all n outcomes of x;

@ Assume that the Gauss-Markov assumptions hold. This means
that the OLS estimators are BLUE. The homoskedasticity
assumption says that Var(u;|X) is constant, .

@ Even if the variance of u; given X is constant, there are other
ways that heteroskedasticity can arise.

@ Autoregressive Conditional Heteroskedasticity is a special type
of Heteroskedasticity.

@ Robert Engle was awarded the 2003 Nobel Memorial Prize in
Economic Sciences specially for introducing this topic.

B
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Series Regressions

Autoregressive Conditional Heteroskedasticity

Empirical Evidence: Daily financial returns display volatility
clustering: periods of high volatility alternate with more tranquil
periods.

Example: Daily log-returns on IBM stock price and Dow Jones index,
March 1990 — March 2005

R_IBM R_DOWJONES

-20

8
1990 1992 1094 1986 1998 2000 002 2004 1990 1992 1994 1996 1998 2000 2002 2004

B
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Series Regressions

Autoregressive Conditional Heteroskedasticity

@ The 1Irst model of this type was the Autoregressive Conditional
Heteroskedasticity (ARCH) model.

@ The 1rst order ARCH model assumes that
E(uﬂut_l,ut_z, ) =ag+ aluf_l, 1

where we leave the conditioning on X implicit.

o If E(ut|us, up—p,...) = 0 (no serial correlation in u;) this implies
that
var(ug|us—1,up_p,...) = ag + txlutz_l

@ Since conditional variances must be positive, this model only
makes sense if oy > 0.and a7 > 0; if a3 = 0, there are no
dynamics in the variance equation.

B B —
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Series Regressions

Autoregressive Conditional Heteroskedasticity

o It also implies that
u% =g+ oquf,l + vt

where E(v¢|us_1,u;—p,...) = 0. This equation looks like an
autoregressive model in u% (hence the name ARCH). The
stationary condition for this equation is a7 < 1, just as in the
usual AR(1) model (as a1 > 0).

@ What implications does (1) have for OLS?

o Because we began by assuming the Gauss-Markov assumptions
hold, OLS is BLUE.

e Even if u; is not normally distributed, we know that the usual OLS
test statistics are asymptotically valid under Assumptions TS.1’
through TS.5’, which are satisfied by static and distributed lag
models with ARCH errors.

B
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Series Regressions

Autoregressive Conditional Heteroskedasticity

o If OLS still has desirable properties under ARCH, why should
we care about ARCH forms of heteroskedasticity in static and
distributed lag models?

o Itis possible to get consistent (but not unbiased) estimators of the g;
that are asymptotically more efficient than the OLS estimators.
WLS, based on estimating (1), will do the trick.

e Economists and financial analysts have become interested in
dynamics in the conditional variance. Since variance is often used
to measure volatility, and volatility is a key element in asset pricing
theories, ARCH models have become important in empirical
finance.
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Series Regressions

Autoregressive Conditional Heteroskedasticity

Let us now consider an autoregressive distributed lag model:
E(We|xt, Vi1, Xe—1,Yt—2, - --) = By + B1Xt + BolYe—1 + Baxe—1
e Define uy = yr — E(y¢|xt, y¢—1, Xt—1, Y12, ...), therefore

Yt = ,BO + ﬁlxt + ,Bzytfl + /33xt,1 + Ut

@ The 1rst order ARCH model in this case assumes that

var(ye|xe, Yi—1, Xt—1,Yi—2,...) = var(u|xe, Yi—1, X1, Yi—2,...)

2
= o+ waup_q,
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Series Regressions

Autoregressive Conditional Heteroskedasticity

In this model:

@ OLS is consistent.

@ The homoscedasticity assumption TS.4’ is necessarily violated as
var(ug|xe, Vi1, X1, Yi—2,.-) = )
=0 + a1 (Yi-1 — By — BXi-1 — BoYr—2 — P3xe-2)”,

o In this case, heteroscedasticity-robust standard error and test statistics
should be computed, or a FGLS/WLS-procedure should be
applied

e Using a FGLS/WLS-procedure will also increase efficiency
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Series Regressions

Autoregressive Conditional Heteroskedasticity (tests)

o Consider again the autoregressive distributed lag model.
@ Usually one finds that more lags are needed to explain the
conditional variance, leading to the ARCH(g) model:

2 2
var(ue|xXe, V-1, Xt—1, Yi—2, ) = &g + 0qU;_q + ...+ XqUi_g,

which is equivalent to

E(u2|Xt, i1, X1, Y2, ) = Qo + 07 1+ ...+ ocquf_q.
o Testing for ARCH effects: Run the regression of i on the
regressors and compute the residuals: ii;
o Lagrange-Multiplier (LM) test against ARCH, which is based on
LM = (T — q) x R*> ~ x*(q). R? is the R? of the regression
07 = v+ 711 + -+ Vg + 0t

@ The null hypothesis is Hp : (no ARCH effects) ay = ... = a4y = 0
vs Hy : There is one ; # 0.
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Series Regressions

Autoregressive Conditional Heteroskedasticity (tests)

Example: Testing for ARCH-effects in stock returns

returng = B + Pireturng_1 + ut

Var(uiu_1) = E(u?luy_1) = ag + aru?
ar(uglu_1 uj|up_1 ag + ajui_q

= u? = ag + alut{l + v

uf = 2.95 + .337 @7,
(0.44)  (.036)

n = 688, R%2 = .1136
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Series Regressions

Generalised Least Squares

Can have violation of TS.4 (Homoskedasticity) and TS.5 (No serial
correlation) simultaneously. Assume still that TS.1 through TS.3 hold
(along with stationarity and weak dependence).

Consider the model

Yt = Bg+ Bixn, +e + Brxs +u,
uy = v/l
Ut = P01+ e

where X are independent of ¢; for all ¢,/ is a function of the
regressors and |p| < 1, and the process {e;} has zero mean and
constant variance o2 and is serially uncorrelated.
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Series Regressions

Generalised Least Squares

Notice that
Var(u;|X) = ho?.

where 02 = var(v¢|X) = 02/ (1 — p?).
Therefore
Yt Po Xt

NI RN AN
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Series Regressions

Generalised Least Squares

@ We can estimate the function / exactly as in chapter 8 of
Wooldridge (2013) [chapter 7 of the program]:

o Run the regression of y; on an intercept, x41, ...xy and save the
residuals ;.
o Regress log(ﬁtz) on an intercept, xy1, . .., X and obtain the fitted

values log( tz)

o Obtain the estimates of li;: iy = exp (log(ﬁ%)).

o Estimate the transformed equation

Yt Bo

N AL AR »

by Cochrane-Orcutt or Prais-Winsten estimators.

@ This leads to a feasible GLS estimator that is asymptotically
efficient. Test statistics from Cochrane-Orcutt or Prais-Winsten
are asymptotically valid.

B
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