
Econometrics

Serial Correlation and Heteroskedasticity in Time Series Regressions,
Wooldridge (2013), Chapter 12

Serially Correlated Errors: Consequences
Testing for Serial Correlation
Generalised Least squares (GLS) with strictly exogenous
regressors
Serial Correlation-Robust Standard Errors
Heteroskedasticity in Time Series Regressions

Autoregressive Conditional Heteroskedasticity

GLS with heteroskedasticity and serial correlation.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serially Correlated Errors: Consequences

With assumptions TS.1 through TS.3, OLS estimators are unbiased

Recall:

Assumption (TS.1 - linearity in parameters)

The stochastic process f(yt, xt1, xt2, ..., xtk); t = 1, 2, ..., ng follows the linear
model:

yt = β0 + β1xt1 + ...+ βkxtk + ut

Assumption (TS.2 - no perfect collinearity)

No regressor independent variable is a constant nor a perfect linear
combination of the other regressors.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serially Correlated Errors: Consequences

Let X denotes the matrix of all regressors for all time-periods, i.e.
X = [xtj; t = 1, ..., n & j = 1; ...; k].

Assumption (TS.3 - zero conditional mean)

E(utjX) = 0, t = 1, 2, . . . , n
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serially Correlated Errors: Consequences

With assumptions TS.1’ through TS.3’, OLS estimators are
consistent

Assumption (TS.1’ - linearity in parameters)

The stochastic process f(yt, xt1, xt2, ..., xtk); t = 1, 2, ..., ng is stationary and
weakly dependent and follows the linear model:

yt = β0 + β1xt1 + ...+ βkxtk + ut

Assumption (TS.2’ - no perfect collinearity)

No regressor independent variable is a constant nor a perfect linear
combination of the other regressors.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serially Correlated Errors: Consequences

Write xt = (xt1,...,xtk).

Assumption (TS.3’ - zero conditional mean)

E(utjxt) = 0, t = 1, 2, . . . , n
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serially Correlated Errors: Consequences

In Time Series we often have serial correlation in the errors (TS.5
or TS.5’ is violated): For each t; s = 1, 2, ..., n such that t 6= s:

Corr(ut, usjxt, xs) 6= 0

But for inference, results areNOT valid if TS.5 (or TS.5’) fail: With
serial correlation in the errors, usual OLS variances are NOT
valid.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serially Correlated Errors: Consequences

If we do not have lagged dependent variables as regressors, and
have serial correlation, OLS is unbiased and consistent but the
usual formulas for the standard errors are not valid.
Serial correlation might lead to inconsistency if we have lagged
dependent variables as regressors, but not always.

Example 1:
yt = β0 + β1yt�1 + ut

where E[utjyt�1] = 0 and futg are serially correlated. In this case OLS
is consistent.
Example 2:

yt = β0 + β1yt�1 + ut

and
ut = ρut�1 + et,

t = 2, . . . , n, where et are i.i.d., jρj < 1 and
E[etjut�1, ut�2, . . .] = E[etjyt�1, yt�2, . . .] = 0.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serially Correlated Errors: Consequences

Example 2: (cont)

Then,

Cov(yt�1, ut) = E[yt�1(ρut�1 + et)]

= ρE(yt�1ut�1)

= ρE[yt�1(yt�1 � β0 � β1yt�2)] 6= 0

unless ρ = 0.
In this case the OLS estimators are not consistent for β0 , β1 . This is
a special form of autocorrelation.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serially Correlated Errors: Consequences

Models with lagged dependent variables and serial correlation in the
errors can often be easily transformed into models without serial
correlation in the errors
Example 2 (cont): Notice that:

yt = β0 + β1yt�1 + ut

= β0 + β1yt�1 + ρ(yt�1 � β0 � β1yt�2) + et

= β0(1� ρ)| {z }
α0

+ (β1 + ρ)| {z }
α1

yt�1�ρβ1| {z }
α2

yt�2 + et

= α0 + α1yt�1 + α2yt�2 + et

where E[etjyt�1, yt�2, . . .] = 0 and
E[ytjyt�1, yt�2, . . .] = E[ytjyt�1, yt�2] = α0 + α1yt�1 + α2yt�2 + et.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serially Correlated Errors: Consequences

Thus, the “relevant” model is an AR(2) model for y. With further
conditions on the parameters (that ensure stability) we can
estimate the αj’s consistently.
Hence, if you have serial correlation you can add a lagged
dependent variable to the model and that might lead to a model
with no serial correlation.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for AR(1) Serial Correlation

Want to be able to test for whether the errors are serially
correlated or not.
Consider the multiple regression model

y = β0 + β1x1 + ...+ βkxk + u.

Want to test the null that ρ = 0 in

ut = ρut�1 + et,

t = 2, . . . , n, where ut is the model error term and et is iid.
With strictly exogenous regressors E(utjX) = 0, t = 1, 2, . . . , n, the
test is: straightforward:

1 Obtain the OLS residuals of the original model.
2 simply regress the residuals on (one period) lagged residuals

(use OLS).
3 Use a typical t-test for H0 : ρ = 0 (don’t need intercept). (The

asymptotic distribution of the t-statistic is standard normal).
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for AR(1) Serial Correlation

We assume TS.1 through TS.4 (homoskedasticity) hold. If TS.4
fails use a heteroskedasticity robust statistic as in chapter 8.

This test detects correlation between ut and ut�1 but not between ut
and ut�2.

Remark: This test is only valid if we do not have lagged
dependent variables as regressors.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for AR(1) Serial Correlation

Example: US data: 1948-1996

Inflationt = β0 + β1Unemploymentt + ut
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for AR(1) Serial Correlation

Example: Regress residuals of previous equation on past residuals

What do you conclude at 5% level?
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for AR(1) Serial Correlation - Durbin Watson statistic

An alternative is the Durbin-Watson (DW) statistic, which is
calculated by many packages. Need TS.1 to TS.6 holding:

DW =
∑n

i=2(ût�1 � ût)2

∑n
i=1 ût2 � 2(1� ρ̂)

Notice that if we do not have serial correlation ρ̂ � 0. Thus
DW � 2.
If the DW statistic is around 2, then we do not reject H0 (absence
of serial correlation of AR(1) type), while if it is significantly < 2
we reject the null hypothesis (against the alternative H1 : ρ > 0,
the most typical).
Critical values are difficult to calculate as they will depend on
the regressors of the model, making the t test easier to work with.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for AR(1) Serial Correlation (continued)

If the regressors are not strictly exogenous, both tests for serial
correlation described before will not work.
For example: If there are lagged dependent variables as regressors
then neither previous t- statistic or DW test for serial correlation
will work.
There are alternative tests that are valid under TS.1’ through
TS.2’ (that are valid also with TS.1 through TS.4).
Regress the residual (or y) on the lagged residual and all of the x’s.
Then test the significance of the lagged residual using the usual
t-statistic.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for AR(1) Serial Correlation (continued)

Example: (cont) Regress residuals of previous equation on past
residuals and regressors
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for Higher Order Serial Correlation

Can test for AR(q) serial correlation in the same basic manner as
AR(1):

y = β0 + β1x1 + ...+ βkxk + u,
ut = ρ1ut�1 + ρ2ut�2 + ...+ ρqut�q + et

where et is an iid sequence with E(etjut�1, ..., ut�q) = 0,
Var(etjut�1, ..., ut�q) = σ2

e

The null is H0 : ρ1 = ... = ρq = 0 . The alternative is H1 : the is
one ρj such that ρj 6= 0.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for Higher Order Serial Correlation

Steps:
1 Regress the residual (or y) on the q lagged residual and all of the

x’s.
2 Then use the usual test of multiple restrictions (on the

coefficients of the lagged residuals).
3 Can use F test or LM test, where the LM version is called a

Breusch-Godfrey test and is LM = (n� q)R2 a� χ2(q) using R2

from residual regression
4 If there is heteroskedasticity can use heteroskedastic robust

statistics.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for Higher Order Serial Correlation

Example: Alternative Specification – Augmented Phillips Curve

Inflationt � Inflationt�1 = β0 + β1(Unemploymentt �NaturalRate�) + ut
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Testing for Absence of AR(2) Serial Correlation in the errors without Strict Exogeneity.

Regress residuals of previous equation on lagged residuals and
regressors
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Correcting for Serial Correlation

If there is serial correlation in the errors, inference using the
“usual” formulas with OLS is not valid.
What can we do?
As in the cross-sectional case with Heteroskedasticity we have 2
alternatives:

1 Use Generalised Least Squares (in case of strictly exogenous regressors).
2 Use OLS but compute Serial-Correlation Robust Standard errors (in

correctly specified models satisfying the contemporaneous exogeneity
assumption).
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Generalised Least squares with strictly exogenous regressors

Let us assume TS.1 through TS.4 (homoskedasticity) hold in our
model, but TS.5 (no serial correlation) fails to hold. Also, assume
stationarity and weak dependence as in TS.1’.

Consider the model

yt = β0 + β1xt1 + ...+ βkxtk + ut

Assume errors follow an AR(1) so

ut = ρut�1 + et,

t = 2, . . . , n where jρj < 1 and et is an i.i.d. sequence with E[etjX] = 0
and also Var[etjX] = σ2

e

Var(utjX) =
σ2

e
1� ρ2

Let us first assume that ρ is known.
We can transform the equation so we have no serial correlation in the
errors
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Generalised Least squares with strictly exogenous regressors

yt = β0 + β1xt1 + ...+ βkxtk + ut

Notice that

ρyt�1 = ρβ0 + ρβ1xt�1,1 + ...+ ρβkxt�1,k + ρut�1

Hence

yt � ρyt�1 = (1� ρ)β0 + β1(xt1 � ρxt�1,1) + ...+ βk(xtk � ρxt�1,k) + et,
for t � 2

In this quasi-differenced model for t � 2, TS.1 through TS.5 hold!
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Generalised Least squares with strictly exogenous regressors

So far we ignored the first observation. Can transform equation for
t = 1,

y1 = β0 + β1x11 + ...+ βkx1k + u1

so that TS.1 through TS.5 hold for t = 1 (not yet the case since u1 and
et have a different variance):

Var(u1jX) = σ2
e /(1� ρ2)

How can we do it?
We can multiply equation by (1� ρ2)1/2 to have TS.1 through TS.5
holding for t = 1

(1� ρ2)1/2y1 = (1� ρ2)1/2β0 + (1� ρ2)1/2β1x1 + ...+ (1� ρ2)1/2βkx1k

+(1� ρ2)1/2u1

In this quasi-differenced model, TS.1 through TS.5 hold!
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Generalised Least squares with strictly exogenous regressors

The transformed model is:

ỹt = β0x̃t0 + β1x̃t1 + ...+ βkx̃tk + ẽ,

where

ỹt =

�
(1� ρ2)1/2y1 t = 1

yt � ρyt�1 t � 2
, x̃t0 =

�
(1� ρ2)1/2 t = 1

1� ρ t � 2
,

and

x̃tj =

�
(1� ρ2)1/2x1,j t = 1
xt,j � ρxt�1,j t � 2

., j = 1, ..., k
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
GLS (cont.)

If is ρ known, can estimate the transformed regression by OLS.
This is called the GLS estimator of the original model.
GLS is BLUE if TS.1 through TS.5 hold in the transformed model.
Can use t and F tests from the transformed equation to conduct
inference on the parameters of the original equation.
These tests are valid (asymptotically) if TS.1 through TS.5 hold in
the transformed model (along with stationarity and weak
dependence in the original variables) and distributions
(conditional on X) are exact (and with minimum variance) if TS.6
holds for the et.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Feasible GLS

Problem: don’t know ρ, need to get an estimate first
Run OLS on the original model and then regress residuals ût on
lagged residuals ût�1 (with OLS). The obtained estimator ρ̂ is the
estimator of ρ.
Finally, replace ρ by ρ̂ and use OLS on the transformed
regression. This is a feasible GLS (FGLS) estimator (or
Prais-Winsten estimator).
If we ignore the first equation (t = 1) we have the
Cochrane-Orcutt estimator (also a FGLS estimator).
These FGLS estimators are not unbiased, but are consistent if
TS.1 through TS.5 hold in the transformed model (along with
stationarity and weak dependence in the original model).
There is no difference, asymptotically (for large sample sizes),
between the two procedures.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Feasible GLS

t and F tests from the transformed equations are valid
(asymptotically). If TS.6 holds for the et , relevant distributions
also hold only asymptotically.
FGLS is asymptotically more efficient than OLS
This basic method can be extended to allow for higher order
serial correlation,AR(q), in the error term. Econometrics
packages deal automatically with estimation of AR serial
correlation

29 / 53



Serial Correlation and Heteroskedasticity in Time
Series Regressions
Feasible GLS

Example:
Inflationt = β0 + β1Unemploymentt + ut

US data: 1948-1996
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Feasible GLS

Need to estimate ρ so we regress residuals of previous equation on
past residuals
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Feasible GLS

Transform variables with estimated and apply OLS to transformed
equation, t�2
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Feasible GLS

Comparison of OLS and Cochrane-Orcutt
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serial Correlation-Robust Standard Errors

FGLS asymptotic distributions rely on strict exogeneity of the
regressors
If strict exogeneity does not hold, we can still use OLS (it is
consistent with only contemporaneous exogeneity, or TS.1’,
along with TS.2’ and TS.3’). Further, we can calculate serial
correlation-robust standard errors
Actually, with only TS.1’ through TS.3’ we can derive
Heteroskedasticity and Serial Correlation robust standard errors, also
known as Heteroskedasticity and Autocorrelation (HAC) robust
standard errors or Newey-West HAC standard errors.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serial Correlation-Robust Standard Errors

Heteroskedasticity and serial correlation-robust standard errors:

where

"se
�

β̂j

�
"= σ̂q

SSTj(1�R2
j )

(SSTj = ∑n
i=1

�
xij � x̄j

�2
and R2

j is the R2

from the regressing xj on all other x0s.)

σ̂2 = ∑n
i=1 û2

i
n�k�1 =

SSR
df .

Remark: these formulae are the formulae of the standard error or
β̂j and the estimator of the variance of ut proposed under the
Gauss Markov assumptions.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serial Correlation-Robust Standard Errors

Correction factor for serial correlation (Newey-West formula):
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serial Correlation-Robust Standard Errors

The integer g is called lag-truncation or bandwidth and controls
how much serial correlation is taken into account:

g = 1 :

g = 2 :

t-statistics, Wald statistics and LM statistics are computed using
these standard errors (Econometrics packages compute this).
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serial Correlation-Robust Standard Errors

Discussion of serial correlation-robust standard errors

For the integer g, values such as g=2 or g=3 are normally
sufficient (there are more involved rules of thumb for how to
choose g)
Serial correlation-robust standard errors are only valid
asymptotically; they may be severely biased if the sample size is
not large enough
The bias is the higher the more autocorrelation there is; if the
series are highly correlated, it might be a good idea to difference
them first
Serial correlation-robust errors should be used if there is serial
correlation and contemporaneous exogeneity holds.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Serial Correlation-Robust Standard Errors

Example:
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Heteroskedasticity in Time Series Regressions

Effects on OLS: Similar consequences to those of serial correlation and
to those of conditional heteroskedasticity in cross-section regressions:

OLS estimates of coefficients remain consistent.
Usual OLS standard errors are invalid
Usual t-test and F-tests are invalid
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Heteroskedasticity in Time Series Regressions

Dealing with Conditional Homoskedasticity
As in cross-section regressions we can go one of two routes:

1 Compute corrected standard errors and implement corrected
t-test and F-tests. (HAC standard errors are valid here).

2 Compute Generalised least squares estimates.

The usual tests of conditional heteroskedasticity can be applied in
time-series regressions but are only valid in the absence of serial
correlation. In contrast we can implement versions of the tests for
serial correlation that are valid in the presence of conditional
heteroskedasticity.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Autoregressive Conditional Heteroskedasticity

This forms the basis for the Autoregressive-Conditional
Heteroskedasticity
Consider the following static model:

y = β0 + β1xt + ut,

such that E(utjX) = 0,where X denotes all n outcomes of xt

Assume that the Gauss-Markov assumptions hold. This means
that the OLS estimators are BLUE. The homoskedasticity
assumption says that Var(utjX) is constant, .
Even if the variance of ut given X is constant, there are other
ways that heteroskedasticity can arise.
Autoregressive Conditional Heteroskedasticity is a special type
of Heteroskedasticity.
Robert Engle was awarded the 2003 Nobel Memorial Prize in
Economic Sciences specially for introducing this topic.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Autoregressive Conditional Heteroskedasticity

Empirical Evidence: Daily financial returns display volatility
clustering: periods of high volatility alternate with more tranquil
periods.
Example: Daily log-returns on IBM stock price and Dow Jones index,
March 1990 – March 2005
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Autoregressive Conditional Heteroskedasticity

The 1rst model of this type was the Autoregressive Conditional
Heteroskedasticity (ARCH) model.
The 1rst order ARCH model assumes that

E(u2
t jut�1, ut�2, ...) = α0 + α1u2

t�1, (1)

where we leave the conditioning on X implicit.
If E(utjut, ut�2, ...) = 0 (no serial correlation in ut) this implies
that

var(utjut�1, ut�2, ...) = α0 + α1u2
t�1

Since conditional variances must be positive, this model only
makes sense if α0 > 0.and α1 � 0; if α1 = 0, there are no
dynamics in the variance equation.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Autoregressive Conditional Heteroskedasticity

It also implies that

u2
t = α0 + α1u2

t�1 + vt

where E(vtjut�1, ut�2, ...) = 0. This equation looks like an
autoregressive model in u2

t (hence the name ARCH). The
stationary condition for this equation is α1 < 1, just as in the
usual AR(1) model (as α1 � 0).
What implications does (1) have for OLS?

Because we began by assuming the Gauss-Markov assumptions
hold, OLS is BLUE.
Even if ut is not normally distributed, we know that the usual OLS
test statistics are asymptotically valid under Assumptions TS.1’
through TS.5’, which are satisfied by static and distributed lag
models with ARCH errors.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Autoregressive Conditional Heteroskedasticity

If OLS still has desirable properties under ARCH, why should
we care about ARCH forms of heteroskedasticity in static and
distributed lag models?

It is possible to get consistent (but not unbiased) estimators of the βj
that are asymptotically more efficient than the OLS estimators.
WLS, based on estimating (1), will do the trick.
Economists and financial analysts have become interested in
dynamics in the conditional variance. Since variance is often used
to measure volatility, and volatility is a key element in asset pricing
theories, ARCH models have become important in empirical
finance.

46 / 53



Serial Correlation and Heteroskedasticity in Time
Series Regressions
Autoregressive Conditional Heteroskedasticity

Let us now consider an autoregressive distributed lag model:

E(ytjxt, yt�1, xt�1, yt�2, . . .) = β0 + β1xt + β2yt�1 + β3xt�1

Define ut = yt � E(ytjxt, yt�1, xt�1, yt�2, ...), therefore

yt = β0 + β1xt + β2yt�1 + β3xt�1 + ut

The 1rst order ARCH model in this case assumes that

var(ytjxt, yt�1, xt�1, yt�2, ...) = var(utjxt, yt�1, xt�1, yt�2, ...)

= α0 + α1u2
t�1,
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Autoregressive Conditional Heteroskedasticity

In this model:

OLS is consistent.
The homoscedasticity assumption TS.4’ is necessarily violated as
var(utjxt, yt�1, xt�1, yt�2, ...) =
=α0 + α1

�
yt�1 � β0 � β1xt�1 � β2yt�2 � β3xt�2

�2 ,
In this case, heteroscedasticity-robust standard error and test statistics
should be computed, or a FGLS/WLS-procedure should be
applied
Using a FGLS/WLS-procedure will also increase efficiency
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Autoregressive Conditional Heteroskedasticity (tests)

Consider again the autoregressive distributed lag model.
Usually one finds that more lags are needed to explain the
conditional variance, leading to the ARCH(q) model:

var(utjxt, yt�1, xt�1, yt�2, ...) = α0 + α1u2
t�1 + . . .+ αqu2

t�q,

which is equivalent to

E(u2
t jxt, yt�1, xt�1, yt�2, ...) = α0 + α1u2

t�1 + . . .+ αqu2
t�q.

Testing for ARCH effects: Run the regression of y on the
regressors and compute the residuals: ût
Lagrange-Multiplier (LM) test against ARCH, which is based on
LM = (T� q)� R2 � χ2(q). R2 is the R2 of the regression

û2
t = γ0 + γ1û2

t�1 + . . .+ γqû2
t�q + vt.

The null hypothesis is H0 : (no ARCH effects) α1 = ... = αq = 0
vs H1 : There is one γj 6= 0.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Autoregressive Conditional Heteroskedasticity (tests)

Example: Testing for ARCH-effects in stock returns
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Generalised Least Squares

Can have violation of TS.4 (Homoskedasticity) and TS.5 (No serial
correlation) simultaneously. Assume still that TS.1 through TS.3 hold
(along with stationarity and weak dependence).
Consider the model

yt = β0 + β1xt1,+...+ βkxtk + ut,

ut = vt
p

ht,
vt = ρvt�1 + et.

where X are independent of et for all t,ht is a function of the
regressors and jρj < 1, and the process {et} has zero mean and
constant variance σ2

e and is serially uncorrelated.
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Generalised Least Squares

Notice that
Var(utjX) = htσ

2
v.

where σ2
v = var(vtjX) = σ2

e /(1� ρ2).
Therefore

ytp
ht
=

β0p
ht
+ β1

xt1p
ht

,+...+ βk
xtkp

ht
+ vt
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Serial Correlation and Heteroskedasticity in Time
Series Regressions
Generalised Least Squares

We can estimate the function h exactly as in chapter 8 of
Wooldridge (2013) [chapter 7 of the program]:

Run the regression of yt on an intercept, xt1, ...xtk and save the
residuals ût.
Regress log(û2

t ) on an intercept, xt1, . . . , xtk and obtain the fitted

values \log(û2
t ).

Obtain the estimates of ht: ĥt = exp
�
\log(û2

t )

�
.

Estimate the transformed equation

ytp
ĥt
=

β0p
ĥt
+ β1

xt1p
ĥt

,+...+ βk
xtkp

ĥt
+ errort

by Cochrane-Orcutt or Prais-Winsten estimators.
This leads to a feasible GLS estimator that is asymptotically
efficient. Test statistics from Cochrane-Orcutt or Prais-Winsten
are asymptotically valid.
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